- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
M_Wilde, Mark (1)
-
Singh, Vishal (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Secret-key distillation from quantum states and channels is a central task of interest in quantum information theory, as it facilitates private communication over a quantum network. Here, we study the task of secret-key distillation from bipartite states and point-to-point quantum channels using local operations and one-way classical communication (one-way LOCC). We employ the resource theory of unextendible entanglement to study the transformation of a bipartite state under one-way LOCC, and we obtain several efficiently computable upper bounds on the number of secret bits that can be distilled from a bipartite state using one-way LOCC channels; these findings apply not only in the one-shot setting but also in some restricted asymptotic settings. We extend our formalism to private communication over a quantum channel assisted by forward classical communication. We obtain efficiently computable upper bounds on the one-shot forward-assisted private capacity of a channel, thus addressing a question in the theory of quantum-secured communication that has been open for some time now. Our formalism also provides upper bounds on the rate of private communication when using a large number of channels in such a way that the error in the transmitted private data decreases exponentially with the number of channel uses. Moreover, our bounds can be computed using semidefinite programs, thus providing a computationally feasible method to understand the limits of private communication over a quantum network.more » « less
An official website of the United States government
